RETROFITTING A CITY SCHOOL

Our Lady of Perpetual Help; Toronto, Canada

reGeneration Ryerson University

Project Overview

reGeneration

Mark Gorgolewski, PhD Faculty Lead Department of Architectural Science

Hayes Zirnhelt, MASc Technical Advisor Department of Architectural Science

Building Envelope Lead 1st year, MBSc Background: Civil engineering

Architecture Lead

1st year, MBSc

Background: Architecture

HVAC + Renewable Energy Lead 1st year, MASc Background: Chemical engineering

Project Management Lead

1st year. MBSc

Background: Building

Construction + Construction

Project Management

Energy Modelling Lead 1st Year. MBSc Background: Architecture

Team Introduction 2

Project Introduction

Don Valley Brick Works Beltline

David A. Balfour Trail

Considering a growing population...

Design is for a 12% growth over the next 10 years **440 occupants:** 400 students ages 4 to 13, 40 staff

Target market includes:

Occupants and community

Local school board (TCDSB)

Stakeholders in construction industry

Reproduced with the permission of the National Research Council of Canada, copyright holder. The colour coding has been added by NAIMA Canada.

Local Climate

Cold Climate in Toronto ASHRAE Zone 5A

Standards

Ontario Building Code - 2019 ASHRAE 90.1 and 62.1 - 2019 Toronto Green Standard (Tier 3)

Design Constraints 6

Minimizing embodied + operational carbon

Minimizing energy consumption

Maximizing usable space after retrofit

Responsible water management

Optimal occupant comfort + wellbeing

Enhanced occupant experience

Community integration

Existing Building • Proposed Redesign

Architecture
Engineering
Comfort and Environmental Quality
Energy Performance
Embodied Environmental Impact
Durability and Resilience
Market Analysis
Occupant Experience

Architecture **Existing Building**

Architecture **Proposed Redesign**

Architecture Engineering Energy Performance Comfort + IEQ Embodied Carbon Durability and Resilience Market Analysis Occupant Experience 12

Architecture

Durability and Resilience

Building Structure Building Envelope Water Systems Mechanical Systems Renewables

Architecture

Engineering
 Comfort and Environmental Quality
 Energy Performance
 Embodied Environmental Impact
 Durability and Resilience
 Market Analysis
 Occupant Experience

Engineering Building Structure

Original structure

- Triple-wythe mass masonry
- Wood-framed roofs
- Wood-framed or concrete floors

New extension structure

- Glulam columns
- Glulam floor and roof joists
- Dowel-laminated timber (DLT) panels

New atrium structure

- Glulam trusses
- Glulam-framed curtain wall
- Dowel-laminated timber (DLT) roof panels

Engineering **Building Envelope**

Retrofit envelope

New extension envelope

Engineering Water Systems

Responsible water management

1. Conserving water

Water demand **reduced** by 52% with new fixtures.

2. Recycling water

All non-potable demand met by water recycling:

3. Restoring natural cycles

Bioswales reduce stormwater runoff while returning water to natural aquifers.

Engineering Mechanical Systems

Hybrid ventilation strategy

Natural ventilation

Heating + cooling

Cooling loads driven down by:

- DOAS cooling coil
- Roof PV shading
- Window shadings
- Operable windows

Engineering Renewables

Geothermal generation

Annual heating demand

240 MBTU

Annual cooling demand

40 MBTU

System size 19 tons

Land requirement 4640 sqft

Architecture

Engineering Energy

Energy Performance

Comfort + IEQ

Embodied Carbon

Durability and Resilience

Market Analysis

Occupant Experience

Solar thermal energy

Solar energy generation

Architecture Engineering Energy Performance Comfort + IEQ Embodied Carbon Durability and Resilience Market Analysis Occupant Experience 29

Solar PV strategy

Excess electricity generation: 269200 kWh annually

Architecture Engineering

IEQ Daylighting Comfort and Environmental Quality
 Energy Performance
 Embodied Environmental Impact
 Durability and Resilience
 Market Analysis
 Occupant Experience

Considerations in design

- Removing old and toxic materials
- Providing thermal and air quality comfort
- Providing acoustic comfort
- Providing access to daylight

Architecture
Engineering
Comfort and Environmental Quality

Load Reduction Energy Strategy Energy Performance
 Embodied Environmental Impact
 Durability and Resilience
 Market Analysis
 Occupant Experience

Plug + lighting load reduction strategies

- Efficient fixtures
- Occupant sensing controls
- Scheduling

Architecture

- Daylight harvesting
- Sustainable use learning

34

Energy use intensity

Site EUI	23 kBTU/sqft/yr
TGS, Tier 3	32 kBTU/sqft/yr
Competition requirement	57 kBTU/sqft/yr

Architecture
Engineering
Comfort and Environmental Quality
Energy Performance

Embodied Environmental Impact
 Durability and Resilience
 Market Analysis
 Occupant Experience

Minimizing carbon emissions

- 1. Operational carbon minimized by using renewable energy systems.
- 2. Embodied carbon minimized by using mass timber and other low-carbon materials.

Embodied Carbon Breakdown by Structure

Life Cycle Assessment using One Click LCA

Materials recovered: 33% Materials returned: 77%

Building circularity score: 55%

Architecture
Engineering
Comfort and Environmental Quality
Energy Performance
Embodied Environmental Impact

Durability and Resilience
 Market Analysis
 Occupant Experience

Durable and resilient design against...

Future weather patterns

- Above-code insulation
- Vapour open masonry walls against freeze-thaw

Fire emergencies

- Fire-rated materials
- Emergency exists
- On site muster points

Resource shortage

• Emergency water storage in basement

On-site muster points

Architecture
Engineering
Comfort and Environmental Quality
Energy Performance
Embodied Environmental Impact
Durability and Resilience

Project Costs Financial Feasibility Market Potential Market AnalysisOccupant Experience

\$4.2 million USD **Project cost:**

> \$102 USD/sqft New build school:

\$135 - \$180 USD/sqft

Annual Utility Bill Savings: 95%

Annual Savings: \$43,500 USD Grid Cashback: \$19,000 USD

Over 25 years, savings + cashback totals \$1.6 million USD.

Likelihood of adoption by...

Toronto Catholic District School Board

- TCDSB Energy Conservation Plan
- Toronto targets net-zero emissions by 2050

Construction industry

- Considered constructability, local and available materials, costs
- Phased 14-month timeline that keeps school in session during the year

Intended occupants

Design around the goal to provide comfortable and enjoyable spaces to learn

Durability and Resilience

Architecture
Engineering
Comfort and Environmental Quality
Energy Performance
Embodied Environmental Impact
Durability and Resilience
Market Analysis
Occupant Experience

User experience:

- Safe + inclusive design
- Biophilic design
- Preservation of history and traditions

Learning experience:

- Learning stations
- Vegetable gardens
- Community partnership

Outdoor study space

Evergreen Brick Works

Supplementary Slides

Existing School Site Layout

Redesigned Site Layout

Ground Floor Plan

First Floor Plan

Basement Floor Plan

5 15 35 70ft

Sections

Retrofit Considerations

- Poor insulation
- Poor water shedding
- Cracked mortar
- Uninsulated basement slab causes moisture problems
- Double-glazed aluminum windows also cause child safety hazards
- Preserving brick façade

Retrofit Envelope

Walls Above Grade	R-38
Walls Below Grade	R-22
Ground Slab	R-17
Roof	R-42
Glazing	R-4.5

New Extension Envelope

Walls Above Grade	R-41
Ground Slab	R-37
Roof	R-52
Glazing	R-5.0
Foundation Walls	R-22

Glazing

- Argon-filled triple-glazed low-e units
- Double-hung with locked bottom sashes for child safety
- Operable skylights in atrium
- U-factors between 0.04 to 0.06 BTU/hsqft
- SHGC of 0.46 for passive solar heating
- SHGC of 0.23 for south façade and atrium

Envelope Sections: Retrofit Wall to Roof

Assembly Control Layers

Primary Bulk Water
Air and Secondary Bulk Water
Class II Vapour Semi-Impermeable
Class III Vapour Semi-Permeable

THERM Thermal Bridging Analysis

Component	U-Value (BTU/htt2F)
2-D	0.276
Vertical	0.026
Horizontal	0.026

Ψ-Factor = -0.14 BTU/hftF Lowest Interior Surface Temperature = 32.2F (17.9C)

Envelope Sections: Retrofit Wall to Wood Floor

Assembly Control Layers

Primary Bulk Water
Air and Secondary Bulk Water
Class II Vapour Semi-Impermeable
Class III Vapour Semi-Permeable

THERM Thermal Bridging Analysis

 Component
 U-Value (BTU/hft2F)

 2-D
 0.013

 Vertical
 0.026

 Horizontal
 0.117

Ψ-Factor = -0.01 BTU/hftF Lowest Interior Surface Temperature = 34.0F (18.9C)

Envelope Sections: Extension Wall to Floor

Assembly Control Layers

Horizontal

Primary Bulk Water
Air and Secondary Bulk Water
Class II Vapour Semi-Impermeable
Class III Vapour Semi-Permeable

THERM Thermal Bridging Analysis

Component	U-Value (BTU/hft2F)
2-D	0.010
Vertical	0.022

Ψ-Factor = 0.00 BTU/hftF Lowest Interior Surface Temperature = 34.4F (19.1C)

0.092

Total Water Demand in Gallons Per Day

New fixtures achieve a **52% reduction** in potable and non-potable water use, meeting Toronto Green Standards Tier 3.

Hybrid ventilation strategy

Natural ventilation

Required total outdoor air rate 13800 cfm or 2.13 ACH

Heating + cooling

Radiant in-floor heating Fan-coil units in select zones

Cooling loads driven down by:

- DOAS cooling coil
- Window shadings
- Roof PV shading
- Operable windows

Peak heating load 220 kBTU/hr

Peak cooling load 110 kBTU/hr

Daylighting

Resilience Against Future Weather

Toronto's Future Weather*

Changing Weather Patterns

- Increasing temperatures
- Fewer snow events
- More summer storm precipitations
- More frequent heat waves

Effects

- Overheating risk
- High wind driven rain
- Snow loads
- · Freeze-thaw deterioration

Water Resiliency

